scripts folder#
This folder contains scripts to run various steps of the pipeline from the command line or via snakemake.
Subfolders#
- scripts/evaluation folder
- plot_training_metrics.py script
- plot_embedding_edge_performance.py script
- plot_embedding_best_tracking_performance.py script
- plot_embedding_edge_plane_diff.py script
- plot_embedding_n_neigbhours.py script
- plot_gnn_edge_performance.py script
- plot_gnn_triplet_performance.py script
- plot_gnn_best_tracking_performance.py script
- evaluate_allen_on_test_sample.py script
- evaluate_etx4velo.py script
- compare_allen_vs_etx4velo.py script
- scripts/plotfactory folder
- scripts/trackfactory folder
collect_test_samples.py script#
A script that generates the test_samples.yaml file that defines the test samples
used in this repository.
preprocess_test_sample.py script#
A script that runs the preprocessing of a test sample.
process_test_sample.py script#
A script that runs the preprocessing of a test sample.
build_graph_using_embedding.py script#
A script that runs the graph building using the embedding model learnt at the previous stage.
- scripts.build_graph_using_embedding.run(path_or_config, partitions=['train', 'val', 'test'], checkpoint=None, reproduce=True, use_gpu=True, suffix=None, **kwargs)[source]#
Run the inference of the metric learning stage.
- Parameters:
path_or_config (
str|dict) – configuration dictionary, or path to the YAML file that contains the configurationpartitions (
List[str]) –Partitions to run the inference on:
train: train datasetval: validation datasettest: all the test datasetsA specific test dataset name
checkpoint (
UnionType[EmbeddingBase,str,None]) – Model already loaded, or path to its checkpoint. IfNone, try to find it automatically in the artifact folder given the configuration.reproduce (
bool) – whether to delete an existing folderuse_gpu (
bool) – whether to use the GPU (if available)**kwargs – Other keyword arguments passed to the
PyTorch.LightingModel.load_from_checkpoint()class method
train_model.py script#
A script that runs the training of a model (embedding or GNN).
- scripts.train_model.train_model(path_or_config, step, identifier=None)[source]#
Run the training of a model.
- Parameters:
path_or_config (
str|dict) – pipeline configuration or path to it.step (
str) – Model step, such as embedding or gnn.identifier (
Optional[str]) – Identifier added at the end of the step name.
- Return type:
Tuple[Trainer,Module]- Returns:
Trainer and trained model.
build_tracks.py script#
Script that runs the edge filtering, triplet building and filtering, and track building from triplets.
export_model_to_onnx.py script#
A python script to export a model to an ONNX file.
- scripts.export_model_to_onnx.export_model_to_onnx(path_or_config, step, mode=None, output_path=None, options=None, dummy=False)[source]#
Export a model of a pipeline to an ONNX file.
- Parameters:
path_or_config (
str|dict) – Path to the pipeline configuration file or the configuration dictionary.step (
Literal['embedding','gnn']) – Model step, such as embedding or gnn.mode (
Optional[str]) – Export mode.output_path (
Optional[str]) – Path where to save the .onnx file containing the model. If not provided, it is defined from the experiment name and step.**options (
Optional[Iterable[str]]) – export options
- Return type:
None