pipeline.GNN package#
This package define the Graph Neural Network which allows to classify the edges and triplets in the graph.
Subpackages#
- pipeline.GNN.models package
get_model()- pipeline.GNN.models.edge_based_gnn module
EdgeBasedGNNEdgeBasedGNN.forward_edges()EdgeBasedGNN.forward_triplets()EdgeBasedGNN.input_kwargsEdgeBasedGNN.input_to_dynamic_axesEdgeBasedGNN.message_step()EdgeBasedGNN.subnetwork_groupsEdgeBasedGNN.subnetwork_to_outputsEdgeBasedGNN.subnetworksEdgeBasedGNN.triplet_output_step_articulation()EdgeBasedGNN.triplet_output_step_elbow_left()EdgeBasedGNN.triplet_output_step_elbow_right()
- pipeline.GNN.models.incremental_triplet_interaction_gnn module
- pipeline.GNN.models.scifi_triplet_interaction_gnn module
- pipeline.GNN.models.triplet_interaction_gnn module
TripletInteractionGNNTripletInteractionGNN.encoding_step()TripletInteractionGNN.forward_edges()TripletInteractionGNN.forward_triplets()TripletInteractionGNN.input_kwargsTripletInteractionGNN.input_to_dynamic_axesTripletInteractionGNN.message_step()TripletInteractionGNN.n_graph_itersTripletInteractionGNN.only_eTripletInteractionGNN.output_step()TripletInteractionGNN.recursiveTripletInteractionGNN.scatter_add()TripletInteractionGNN.scatter_max()TripletInteractionGNN.subnetwork_groupsTripletInteractionGNN.subnetwork_to_outputsTripletInteractionGNN.to_onnx()TripletInteractionGNN.triplet_output_step_articulation()TripletInteractionGNN.triplet_output_step_elbow_left()TripletInteractionGNN.triplet_output_step_elbow_right()
pipeline.GNN.triplet_gnn_base module#
A module that define TripletGNNBase, the base class of all
triplet-based GNNs in this repository.
- class pipeline.GNN.triplet_gnn_base.TripletGNNBase(*args: Any, **kwargs: Any)[source]#
Bases:
ModelBaseThe base class for triplet-base models, that first classify edges, then triplets.
- common_training_validation_step(batch, edge_score_cut=None, with_triplets=None, compute_loss=False)[source]#
Common forward step and loss computation for the training and validation steps.
- Parameters:
batch (
Data) – event graphwith_triplets (
Optional[bool]) – whether to include the forward step on tripletsedge_score_cut (
Optional[float]) – minimal edge score the edges are required to have
- Return type:
Dict[str,Any]- Returns:
Output of the forward step and loss computation.
- compute_normalised_loss(output, truth)[source]#
Compute typical weighted focal loss for given output and truth.
- Parameters:
output (
Tensor) – logitstruth (
Tensor) – targets
- Return type:
Tensor- Returns:
Normalised sigmoid focal loss.
- property edge_checkpointing: bool#
- filter_edges(edge_index, edge_score, edge_score_cut=None)[source]#
- Return type:
Tuple[Tensor,Tensor]
- forward(x, edge_index, edge_score_cut=None, with_triplets=True)[source]#
Forward step of the triplet-based Neural Network.
1.
forward_edges()method is called, and outputs the edge logitsedge_output, with possibly other tensors that can be used for the triplets.2. The edges are filtered using the
self.filter_edges_for_triplets()method.3. The triplets are built using
utils.graphutils.tripletbuilding.from_edge_index_to_triplet_indices()4.
forward_triplets()method is called, and outputs the triplets logitstriplet_outputs.- Parameters:
x (
Tensor) – node featuresedge_index (
Tensor) – tensor with shape(2, n_edges)of the edge indicesedge_score_cut (
Optional[float]) – Minal edge scorewith_triplets (
bool) – whether to include the triplet inference
- Return type:
Dict[str,Any]
- forward_edges(x, start, end)[source]#
Forward step for edge classification.
- Parameters:
x (
Tensor) – Hit featuresstart (
Tensor) – tensor of start indicesend (
Tensor) – tensor of edge indices
- Return type:
Dict[str,Tensor]- Returns:
A dictionary of tensors. Should at least contain
edge_output, the logits of each edges.
- forward_triplets(dict_triplet_indices, *args, **kwargs)[source]#
Forward step for triplet building and classification.
- Parameters:
dict_triplet_indices (
Dict[str,Tensor]) – associatesarticulation,elbow_leftandelbow_rightwith the corresponding triplet indices.args – Other arguments to pass to the triplet output step.
kwargs – Other arguments to pass to the triplet output step.
- Return type:
Dict[str,Tensor]- Returns:
A dictionary that associates
articulation,elbow_leftandelbow_rightwith the logits of the corresponding triplets.
- get_lazy_dataset(*args, **kwargs)[source]#
Get the lazy dataset object.
- Parameters:
input_dir – input directory
n_events – number of events to load
shuffle – whether to shuffle the input paths (applied before selected the first
n_events)seed – seed for the shuffling
**kwargs – Other keyword arguments passed to the
utils.loaderutils.dataiterator.LazyDatasetBaseconstructor.
- Return type:
- Returns:
utils.loaderutils.dataiterator.LazyDatasetBaseobject
- get_lazy_dataset_partition(partition, *args, **kwargs)[source]#
Get the lazy dataset of a partition.
- Parameters:
partition (
str) –train,valor name of the test datasetn_events – number of events to load
shuffle – whether to shuffle the input paths (applied before selected the first
n_events)seed – seed for the shuffling
**kwargs – Other keyword arguments passed to
ModelBase.get_lazy_dataset()
- Return type:
LazyDatasetBase- Returns:
Lazy dataset of the
partition
- inference(batch, with_triplets=True, with_triplet_truths=False, edge_score_cut=None)[source]#
Run inference (without loss computation).
- Parameters:
batch (
Data) – event graphwith_triplets (
bool) – whether to include the forward step on tripletsedge_score_cut (
Optional[float]) – minimal edge score the edges are required to have
- Return type:
Dict[str,Any]- Returns:
Output of the forward step.
- property input_kwargs: Dict[str, Any]#
Associates an input name with a dictionary corresponding to the keyword arguments used to build a dummy tensor representing the input. This dictionary basically gives the
sizeanddtypeof the tensor.
- property input_to_dynamic_axes#
A dictionary that associates an input name with the dynamic axis specification.
- log_metrics_gen(loss, scores, predictions, truths, suffix='')[source]#
Add entry to the log.
- Parameters:
loss (
Tensor) – overall lossscores (
Tensor) – edge or triplet scores. Used to compute the AUCpredictions (
Tensor) – edge or triplet predicted targetstruths (
Tensor) – edge or triplet targetssuffix (
str) – optional suffix, e.g.,_edgeor_triplet
- Return type:
None
- property loss: str#
Number of hidden units
Evaluation step. Can be used for validation and test.
- Parameters:
batch (
Data) – event graphlog (
bool) – whether to add an entry to the logwith_triplets (
Optional[bool]) – whether to include the triplet inference
- property subnetwork_to_outputs: Dict[str, List[str]]#
A dictionary that associates a subnetwork name with the list of its output names.
- to_onnx(outpath, mode=None, options=None)[source]#
Export the model to ONNX
- Parameters:
outpath (
str) – path to the ONNX output filemode (
Optional[str]) – subnetwork to save
- Return type:
None
- property triplet_checkpointing: bool#
- property with_triplets: bool#
- class pipeline.GNN.triplet_gnn_base.TripletGNNLazyDataset(input_dir, n_events=None, shuffle=False, seed=None, **kwargs)[source]#
Bases:
LazyDatasetBase- fetch_dataset(input_path, **kwargs)[source]#
Load and process one PyTorch DataSet.
- Parameters:
input_path (
str) – path to the PyTorch datasetmap_location – location where to load the dataset
**kwargs – Other keyword arguments passed to
torch.load()
- Return type:
Data- Returns:
Load PyTorch data object
pipeline.GNN.perfect_gnn module#
Replace the GNN by a perfect inference in order to understand what is the best result that can be obtained with the current pipeline.
- class pipeline.GNN.perfect_gnn.PerfectInferenceBuilder[source]#
Bases:
BuilderBaseGenerate perfect inference, that is, the edge score is equal to the truth.
pipeline.GNN.gnn_validation module#
- class pipeline.GNN.gnn_validation.GNNScoreCutExplorer(model, builder='default')[source]#
Bases:
ParamExplorerA class that allows to vary the score cut after the GNN, and compare the metric performances of track finding.
- property default_step: str#
Name of the temp to fall back to if not provided.
- class pipeline.GNN.gnn_validation.TripletGNNScoreCutExplorer(model)[source]#
Bases:
ParamExplorerA class that allows to vary the score cut after the GNN, and compare the metric performances of track finding.
pipeline.GNN.gnn_plots module#
- pipeline.GNN.gnn_plots.plot_best_performances_score_cut(model, partition, edge_score_cuts, builder='default', n_events=None, seed=None, identifier=None, path_or_config=None, step='gnn', **kwargs)[source]#
- Return type:
Tuple[Figure | npt.NDArray, List[Axes], Dict[float, Dict[Tuple[str | None, str], float]]]
- pipeline.GNN.gnn_plots.plot_best_performances_score_cut_triplets(model, partition, edge_score_cut, triplet_score_cuts, n_events=None, seed=None, identifier=None, path_or_config=None, step='gnn', **kwargs)[source]#
- Return type:
Tuple[Figure | npt.NDArray, List[Axes], Dict[float, Dict[Tuple[str | None, str], float]]]