pipeline package#
This package handles the various steps of the GNN-based pipeline, from preprocessing to track-finding evaluation.
- pipeline.get_model(path_or_config, step)[source]#
Get the model class of a given step for a given pipeline configuration.
- Parameters:
path_or_config (
str|dict) – pipeline configurationstep (
str) – model step (embeddingorgnn)
- Return type:
Type[ModelBase]- Returns:
Model class that can be later instantiated.
- pipeline.instantiate_model_for_training(path_or_config, step)[source]#
Instantiate a new model. The model can then be trained.
The function auto-detects the the model type. The latter can also be instantiated from a trained model (transfer learning) using the parameter
fromin the configuration file.- Parameters:
path_or_config (
str|dict) – pipeline configuraitonstep (
str) – model step (embeddingorgnn)
- Return type:
- Returns:
Model that was not trained.
- pipeline.load_trained_model(path_or_config, step, checkpoint_path=None, **kwargs)[source]#
Load a model that was already trained.
- Parameters:
path_or_config (
str|dict) – pipeline configurationstep (
str) – model step (embeddingorgnn)checkpoint_path (
Optional[str]) – path to a checkpoint
- Return type:
- Returns:
Trained model
Subpackages#
- pipeline.Preprocessing package
- pipeline.Preprocessing.balancing module
- pipeline.Preprocessing.hit_filtering module
- pipeline.Preprocessing.inputloader module
- pipeline.Preprocessing.line_metrics module
- pipeline.Preprocessing.particle_fitting_metrics module
- pipeline.Preprocessing.poly_metrics module
- pipeline.Preprocessing.preprocessing module
- pipeline.Preprocessing.preprocessing_paths module
- pipeline.Preprocessing.process_custom module
SelectionFunctionapply_mask()at_least_1_hit_on_scifi()at_least_7_planes()compute_n_particles_per_hit()compute_n_unique_planes()cut_long_tracks()default_old_training_for_rta_presentation()everything_but_electrons()everything_but_long_electrons()less_than_3_hits_on_same_plane()only_keep_hits_on_particles()only_long_electrons()reconstructible_scifi()remove_curved_particles()remove_particle_not_poly_enough()remove_particles_too_scattered_on_plane()track_weighting_selection()triplets_first_selection()
- pipeline.Preprocessing.run_preprocessing module
- pipeline.Processing package
- pipeline.Embedding package
- Subpackages
- Submodules
- pipeline.Embedding.build_embedding module
- pipeline.Embedding.embedding_base module
EmbeddingBaseEmbeddingBase.append_true_pairs()EmbeddingBase.build_edges()EmbeddingBase.edgedirEmbeddingBase.get_hnm_pairs()EmbeddingBase.get_lazy_dataset()EmbeddingBase.get_lazy_dataset_partition()EmbeddingBase.get_loss()EmbeddingBase.get_query_points()EmbeddingBase.get_random_pairs()EmbeddingBase.get_squared_distances()EmbeddingBase.get_training_edges()EmbeddingBase.get_truth()EmbeddingBase.inference()EmbeddingBase.input_kwargsEmbeddingBase.input_to_dynamic_axesEmbeddingBase.last_planeEmbeddingBase.n_planesEmbeddingBase.n_total_planesEmbeddingBase.query_planesEmbeddingBase.remove_planes()EmbeddingBase.subnetwork_to_outputsEmbeddingBase.to_onnx()EmbeddingBase.training_step()EmbeddingBase.training_validation_step()EmbeddingBase.validate_edges()EmbeddingBase.validation_step()
EmbeddingLazyDataSetget_example_data()
- pipeline.Embedding.embedding_plots module
- pipeline.Embedding.embedding_validation module
- pipeline.Embedding.process_custom module
- pipeline.GNN package
- pipeline.GNN.gnn_plots module
- pipeline.GNN.gnn_validation module
- pipeline.GNN.perfect_gnn module
- pipeline.GNN.triplet_gnn_base module
TripletGNNBaseTripletGNNBase.common_training_validation_step()TripletGNNBase.compute_normalised_loss()TripletGNNBase.edge_checkpointingTripletGNNBase.filter_edges()TripletGNNBase.forward()TripletGNNBase.forward_edges()TripletGNNBase.forward_triplets()TripletGNNBase.get_lazy_dataset()TripletGNNBase.get_lazy_dataset_partition()TripletGNNBase.inference()TripletGNNBase.input_kwargsTripletGNNBase.input_to_dynamic_axesTripletGNNBase.log_metrics_gen()TripletGNNBase.lossTripletGNNBase.n_hiddensTripletGNNBase.shared_evaluation()TripletGNNBase.subnetwork_to_outputsTripletGNNBase.test_step()TripletGNNBase.to_onnx()TripletGNNBase.training_step()TripletGNNBase.triplet_checkpointingTripletGNNBase.triplet_output_step()TripletGNNBase.triplet_output_step_articulation()TripletGNNBase.triplet_output_step_elbow_left()TripletGNNBase.triplet_output_step_elbow_right()TripletGNNBase.validation_step()TripletGNNBase.with_triplets
TripletGNNLazyDatasetget_df_edges_from_batch_only()
- pipeline.GNN.models package
- pipeline.TrackBuilding package
- pipeline.Evaluation package
- pipeline.utils package
- Subpackages
- pipeline.utils.commonutils package
- pipeline.utils.graphutils package
- pipeline.utils.graphutils.batch2df module
- pipeline.utils.graphutils.edgebuilding module
- pipeline.utils.graphutils.edgeutils module
- pipeline.utils.graphutils.knn module
- pipeline.utils.graphutils.torchutils module
- pipeline.utils.graphutils.tripletbuilding module
- pipeline.utils.graphutils.truths module
- pipeline.utils.loaderutils package
- pipeline.utils.modelutils package
- pipeline.utils.modelutils.basemodel module
- pipeline.utils.modelutils.batches module
- pipeline.utils.modelutils.build module
- pipeline.utils.modelutils.checkpoint_utils module
- pipeline.utils.modelutils.exploration module
- pipeline.utils.modelutils.export module
- pipeline.utils.modelutils.metrics module
- pipeline.utils.modelutils.mlp module
- pipeline.utils.plotutils package
- pipeline.utils.scriptutils package
- pipeline.utils.tools package
- Subpackages